AMSI 2013: MEASURE THEORY Extra Solutions C

* to * 64

Marty Ross martinirossi@gmail.com

February 11, 2013

Given $\mu(X) < \infty$, we want to show

$$1 \leqslant p < r < \infty \implies \left(\oint |f|^p \right)^{\frac{1}{p}} \leqslant \left(\oint |f|^r \right)^{\frac{1}{r}}.$$

To do this, we apply Hölder's Inequality, with $F = |f|^p$, G = 1, $P = \frac{r}{p}$, $Q = \frac{P}{P-1} = \frac{r}{r-p}$. This gives

$$\int |FG| \leq ||F||_P ||G||_Q \implies \int |f|^p \leq \left(\int |f|^r\right)^{\frac{p}{r}} \cdot \left(\int 1\right)^{\frac{p-p}{r}}$$
$$\implies \left(\int |f|^p\right)^{\frac{1}{p}} \leq \left(\int |f|^r\right)^{\frac{1}{r}} \cdot (\mu(X))^{\frac{1}{p}-\frac{1}{r}}.$$

Dividing both sides by $(\mu(X))^{\frac{1}{p}}$ gives the desired result.

We assume $f_j \to f$ in L^p . If $p = \infty$ then this obviously implies pointwise convergence a.e.. But for $p < \infty$ it is easy to construct examples for $\{f_j\}$ doesn't converge pointwise anywhere. For example, for $2^n \leq j < 2^{n+1}$ let f_j be the characteristic function on $\left[\frac{j-2^n}{2^n}, \frac{j+1-2^n}{2^n}\right]$.

To show there is always a subsequence that converges pointwise a.e., we use the fact that $\{f_j\}$ is Cauchy. This implies that, for any $m \in \mathbb{N}$, we can find an N_m such that

$$j,k \ge N_m \implies ||f_j - f_k||_p < \frac{1}{2^m}.$$

Choosing the N_m inductively, we can also ensure that $\{N_m\}_m$ is a strictly increasing sequence. We show the subsequence $\{f_{N_m}\}$ converges a.e. to f. To do this, first consider

$$g_n = \sum_{m=1}^n \left| f_{N_{m+1}} - f_{N_m} \right|$$

Then

$$g_n \nearrow g = \sum_{m=1}^{\infty} |f_{N_{m+1}} - f_{N_m}|$$

Also, by Minkowski's Inequality,

$$||g_n||_p = \left\|\sum_{m=1}^n |f_{N_{m+1}} - f_{N_m}|\right\|_p \leq \sum_{m=1}^n ||f_{N_{m+1}} - f_{N_m}||_p < 1.$$

Thus, by the Monotone Convergence Theorem (Theorem 19),

$$\int g^p = \lim_{n \to \infty} \int g_n^p \leqslant 1 < \infty \,.$$

It follows that $g < \infty$ a.e. That is, for almost every x, the series $\sum (f_{N_{m+1}}(x) - f_{N_m}(x))$ of real numbers converges absolutely: this implies the series itself converges. Then

$$f = f_{N_1} + \sum_{m=1}^{\infty} \left(f_{N_{m+1}}(x) - f_{N_m}(x) \right) \,.$$

The *m*th partial sum is exactly $f_{N_{m+1}}$. That is, $f_{N_m} \to f$ a.e., which is exactly what we wanted to show.

43 X is a topological space, and $\mathcal{F} \subseteq \wp(X)$ contains the closed and open sets, and is closed under countable unions and countable intersections. we want to show that $\mathcal{F} \supseteq \mathcal{B}$. To do this, set

$$\mathcal{G} = \{ A \subseteq X : A \in \mathcal{F} \text{ and } \sim A \in \mathcal{F} \}$$

Clearly \mathcal{G} contains all closed sets (since the complements of the closed sets are the open sets, which are in \mathcal{F}). So, if we can show that \mathcal{G} is a σ -algebra then $\mathcal{B} \subseteq \mathcal{G} \subseteq \mathcal{F}$.

By construction, \mathcal{G} is closed under complements. To show \mathcal{G} is closed under countable unions, suppose $\{A_j\}$ is a sequence of sets in \mathcal{G} : so, each A_j and $\sim A_j$ is in \mathcal{F} . Then

$$\begin{cases} \bigcup_{j=1}^{\infty} A_j \in \mathcal{F} & \text{(since } \mathcal{F} \text{ is closed under countable unions)}, \\ \sim \bigcup_{j=1}^{\infty} A_j = \bigcap_{j=1}^{\infty} \sim A_j \in \mathcal{F} & \text{(since } \mathcal{F} \text{ is closed under countable intersections)}. \end{cases}$$

Thus \mathcal{G} is closed under countable unions, as desired.

- (ii) Let μ be the Anything-Will-Do measure on X = {a, b}, and let X have the indiscrete topology (so the only open sets are X and Ø, and thus these are the only Borel sets as well). Then μ is Borel regular, but A = {a} is not contained in a Borel set B with μ(B~A) = 0. (The only possibility is B = X, and that doesn't work).
- (iii) Similar to the last example, let $X = \{a, b\}$ be given the indiscrete topology, and let μ be the Anything-Is-Wonderful measure. μ is again Borel regular, and now $A = \{a\}$ is μ -measurable. But there is again no Borel $B \supseteq A$ with $\mu(B \sim A) = 0$.

46 If μ is Borel regular and $A \subseteq X$ is measurable with $\mu(A) < \infty$ then we want to show $\mu \, \sqcup A$ is Borel regular. By Theorem 35(b), we can choose a Borel $B \supseteq A$ with $\mu(B \sim A) = 0$. We know by Theorem 35(c) that $\mu \, \sqcup B$ is Borel regular, so we just have show that $\mu \, \sqcup B = \mu \, \sqcup A$. For $C \subseteq X$ we have

$$\mu _ B(C) = \mu(B \cap C) \leqslant \mu(A \cap C) + \mu((B \sim A) \cap C) \leqslant \mu(A \cap C) + \mu(B \sim A) = \mu(A \cap C) = \mu _ A(C) .$$

The other direction is trivial, and so we're done.

(48) X is a locally compact and separable metric space. We want to show that we can write $X = \bigcup_n V_n$, where V_n is open and \overline{V}_n is compact.

Since X is separable, we have a countable dense subset $Y = \{y_1, y_2, ...\}$. We know that around each y_n there is a compact ball; we just have to be careful to choose these balls to be reasonably large. (For example, taking the interval of radius $\frac{1}{2^n}$ around the *n*'th rational $q_n \in \mathbb{Q}$ will *not* work in \mathbb{R}). So, we set

(*)
$$r_n = \frac{1}{2} \min \left(1, \sup\{r : \overline{B}_r(y_n) \text{ is compact}\} \right)$$

Setting $V_n = B_{r_n}(y_n)$ it is immediate that \overline{V}_n is compact. (Note, this may not be true without the *min* in the definition of r_n). We just have to show that $X = \bigcup_n V_n$.

Considering $x \in X$, we want to show x is in some V_n . We know that there is an r such that $\overline{B}_r(x)$ is compact. We can also assume that $r \leq \frac{3}{2}$ (since closed subsets of a compact set are compact, any smaller closed ball will still be compact). Next, since Y is dense in X, we can find a y_n with $d(x, y_n) \leq \frac{r}{3}$. But then $\overline{B}_{\frac{2r}{3}}(y_n) \subseteq \overline{B}_r(x)$, and thus is compact. Then by (*), and since $r \leq \frac{3}{2}$,

$$r_n \geqslant \frac{r}{3}$$

But then $x \in B_{\frac{r}{3}}(y_n) \subseteq B_{r_n}(y_n) = V_n$.

×	L
$\left(\right)$)

For μ a measure on X and ν a measure on Y, we define $\mu \times \nu : \wp(X \times Y) \to \mathbb{R}^*$:

$$\mu \times \nu(D) = \inf \left\{ \sum_{j=1}^{\infty} \mu(A_j) \nu(B_j) : A_j \subset X \ \mu \text{-measurable}, \ B \subset Y \ \nu \text{-measurable} \right\} \quad D \subset X \times Y.$$

We want to show this is a measure. Only countable subadditivity is nontrivial. So, suppose $\{D_j\}_j$ is a sequence of subsets of $X \times Y$. Fix $\epsilon > 0$, and for each D_j let $\{A_{jk} \times B_{jk}\}_k$ be a covering by rectangles with measurable sides and such that

$$\sum_{k=1} \mu(A_{jk})\nu(B_{jk}) \leqslant \mu \times \nu(D_j) + \frac{\epsilon}{2^j}$$

Then $\{A_{jk} \times B_{jk}\}_{j,k}$ is a covering of $\bigcup_j D_j$, and so

$$\mu \times \nu \left(\bigcup_{j=1}^{\infty} D_j \right) \leqslant \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu(A_{jk}) \nu(B_{jk}) \leqslant \sum_{j=1}^{\infty} \mu \times \nu(D_j) + \epsilon \,.$$

By the Thrilling ϵ -Lemma, we're done.

$$\underbrace{ \underbrace{ \mathfrak{S}}_{j=1}^{\infty} \text{We want to prove } \mathscr{L}^{m+n} = \mathscr{L}^m \times \mathscr{L}^n. \text{ Fix } D \subseteq \mathbb{R}^{m+n}. \text{ Then} }_{j=1} \\ \left\{ \mathscr{L}^{m+n}(D) = \inf \left\{ \sum_{j=1}^{\infty} v(P_j) : D \subseteq \bigcup_{j=1}^{\infty} P_j, P_j \text{ an open } (m+n)\text{-box} \right\} \\ \mathscr{L}^m \times \mathscr{L}^n(D) = \inf \left\{ \sum_{j=1}^{\infty} \mathscr{L}^m(A_j) \cdot \mathscr{L}^n(B_j) : D \subseteq \bigcup_{j=1}^{\infty} A_j \times B_j, A_j \subset \mathbb{R}^m, B_j \subset \mathbb{R}^n \right\}$$

Note that any open (m+n)-box can be thought as an $A_j \times B_j$ with measurable sides. And, it is immediate from Proposition 5 that

$$v(A_j \times B_j) = v(A_j) \cdot v(B_j) = \mathscr{L}^m(A_j) \cdot \mathscr{L}^n(B_j).$$

It follows immediately that $\mathscr{L}^m \times \mathscr{L}^n(D) \leqslant \mathscr{L}^{m+n}(D)$.

We shall prove the reverse inequality for D bounded; the result then follows for general D by continuity of regular measures (Theorem 35(a)). Fixing j, we choose suitable $\eta > 0$ and $\delta > 0$, and we cover A_j and B_j by collections of boxes $\{P_{jk}\}$ and $\{Q_{jl}\}$, such that

$$\left(\sum_{k=1}^{\infty} v(P_{jk})\right) \cdot \left(\sum_{l=1}^{\infty} v(Q_{jl})\right) \leqslant \left(\mathscr{L}^m(A_j) + \eta\right) \cdot \left(\mathscr{L}^n(B_j) + \delta\right) \leqslant \mathscr{L}^m(A_j) \cdot \mathscr{L}^n(B_j) + \frac{\epsilon}{2^j}.$$

(We can find suitable η and δ because D is bounded, and thus A_j and B_j have finite measure). This gives us a covering of D by (m+n)-boxes $\{P_{jk} \times Q_{jl}\}_{j,k,l}$, and again, $v(P_{jk}) \cdot v(Q_{jl}) = v(P_{jk} \times Q_{jl})$. It follows that

$$\mathscr{L}^{m+n}(D) \leqslant \sum_{j=1}^{\infty} \mathscr{L}^m(A_j) \cdot \mathscr{L}^n(B_j) + \epsilon.$$

By the Thrilling ϵ -Lemma, we're done.

52 If $A \subseteq X$ is Borel and $B \subseteq Y$ is Borel then we want to show $A \times B$ is Borel. It is enough to show $A \times Y$ and $X \times B$ are Borel, since the intersection of these two sets gives the desired set. Define

$$\mathcal{F} = \{ C \subseteq X : C \times Y \text{ is Borel} \}.$$

Then \mathcal{F} is easily shown to be a σ -algebra. Also, \mathcal{F} contains any open $V \subseteq X$ (since $V \times Y$ is open, and thus Borel). Thus, by definition of the Borel sets, \mathcal{F} contains all Borel subsets of X; in particular, $A \in \mathcal{F}$, and thus $A \times Y$ is Borel. Similarly if $B \subseteq Y$ is Borel then $X \times B$ is Borel.

- (a) We want to show that if f is summable then f is σ -finite. Fix j and let $E_n = \{x : |f(x)| \ge 1/j\}$. Then E_j is measurable and $\int_{E_n} |f| \ge \frac{1}{j}\mu(E_j)$, from which it follows that $\mu(E_j) < \infty$. Thus, $\{x : f(x) \ne 0\} = \bigcup E_j$ is σ -finite.
- (b) Suppose X is σ -finite, so $X = \bigcup A_j$ with A_j measurable and $\mu(A_j) < \infty$. Suppose f is measurable and let $E = \{x : f(x) \neq 0\}$. Then $E = \bigcup (E \cap A_j)$ is a countable union of sets of finite measure, and thus f is σ -finite.
- (c) Suppose $X = \bigcup A_j$ and $Y = \bigcup B_k$ are σ -finite, with all the A_j and B_k measurable, and with each $\mu(A_j) < \infty$ and $\nu(B_k) < \infty$. Then $X \times Y = \bigcup (A_j \times B_k)$. And, by Theorem 42, each $A_j \times B_k$ is $\mu \times \nu$ -measurable with $\mu \times \nu(A_j \times B_k) = \mu(A_j) \cdot \nu(B_k) < \infty$. Thus $X \times Y$ is σ -finite.

We want to prove Theorem 47, the Fubini-Tonelli Theorem.

(i) Suppose $f: X \times Y \to \mathbb{R}^*$ is nonnegative and σ -finite. Using Lemma 20, we can write

(†)
$$f = \sum_{j=1}^{\infty} h_j \chi_{A_j} \qquad h_j \ge 0, A_j \ \sigma\text{-finite}.$$

Fix j. Then, by Lemma 46(i) for ν -a.e. $y \in Y$, the slice

$$(A_j)_y = \{x \in X : (x, y) \in A_j\}$$

is μ -measurable. Thus, for ν -a.e. $y \in Y$, the function

(*)
$$x \mapsto \chi_{(A_j)y}(x) = \chi_{A_j}(x, y)$$

is μ -measurable. Considering all j together, for ν -a.e. $y \in Y$ every function given by (*) is μ -measurable. Thus, for ν -a.e. $y \in Y$, the function

$$x\mapsto \sum_{j=1}^\infty h_j\chi_{A_j}(x,y)=f(x,y)$$

is μ -measurable. Integrating with the help of Lemma 46 (ii), (iii), and the Monotone Convergence Theorem,

$$\int_{Y} \left(\int_{X} f(x,y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y) = \sum_{j=1}^{\infty} h_j \int_{Y} \mu((A_j)_y) \nu(y) = \sum_{j=1}^{\infty} h_j \cdot \mu \times \nu(A_j) \, .$$

On the other hand, Lemma 20 applies directly to (†) to give

$$\int_{X \times Y} f \, \mathrm{d}\mu \times \nu = \sum_{j=1}^{\infty} h_j \cdot \mu \times \nu(A_j) \, .$$

This is exactly the result we want for nonnegative f.

(ii) For general σ -finite f, we write $f = f^+ - f^-$, and the desired result follows immediately from the case for nonnegative f.

(a) We consider \mathscr{L} on [0, 1] and μ_0 counting measure on [0, 1]. We consider $f = \chi_D$ where $D = \{(x, x) : x \in [0, 1]\}$. Note that f is measurable, since D is closed and $\mathscr{L} \times \mu_0$ is Borel (by Theorem 45). We then easily calculate

$$\begin{cases} \int\limits_{[0,1]} \left(\int\limits_{[0,1]} \chi_D(x,y) \, \mathrm{d}\mathscr{L}(x) \right) \, \mathrm{d}\mu_0(y) = \int\limits_{[0,1]} 0 \, \mathrm{d}\mu_0(y) = 0 \,, \\ \\ \int\limits_{[0,1]} \left(\int\limits_{[0,1]} \chi_D(x,y) \, \mathrm{d}\mu_0(y) \right) \, \mathrm{d}\mathscr{L}(x) = \int\limits_{[0,1]} 1 \, \mathrm{d}\mathscr{L}(x) = 1 \,. \end{cases}$$

Finally, we can show that

(*)
$$\int \chi_D \, \mathrm{d}\mathscr{L} \times \mu_0 = \mathscr{L} \times \mu_0(D) = \infty$$

To see this, consider a covering $\{A_j \times B_j\}$ of D by rectangles (by Borel regularity we don't have to worry if the sides are measurable). We can also assume $A_j \subseteq B_j$, since replacing A_j by $A_j \cap B_j$ covers the same points of D. But one of the A_j must have positive Lebesgue measure (since $[0, 1] \subseteq \bigcup_j A_j$), and then

$$\mathscr{L}(A_j) > 0 \implies \mu_0(B_j) = \infty \implies \mathscr{L} \times \mu_0(A_j \times B_j) = \infty.$$

Then (*) follows immediately from the definition of the product measure.

(b) We now consider $f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$ with respect to \mathscr{L} on [0, 1] in each variable. f is Borel, and thus measurable, since it is continuous except at (0, 1); and then f is automatically σ -finite, since $\mathscr{L} \times \mathscr{L}([0, 1] \times [0, 1]) = 1 < \infty$. Now, by antisymmetry

$$I = \int_{0}^{1} \int_{0}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, \mathrm{d}x \, \mathrm{d}y = -\int_{0}^{1} \int_{0}^{1} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, \mathrm{d}y \, \mathrm{d}x \, .$$

So, to show the two integrals are not equal, we just have to show $I \neq 0$. Letting $x = y \tan u$ (for y > 0), we have

$$\int_{0}^{1} \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}} dx = \int_{0}^{\arctan(\frac{1}{y})} \frac{y^{2} \tan^{2} u - 1}{y^{4} \sec^{4} u} y \sec^{2} u \, du$$
$$= \int_{0}^{\arctan(\frac{1}{y})} \frac{1}{y} (\sin^{2} u - \cos^{2} u) = \left[-\frac{1}{y} \sin u \cos u \right]_{0}^{\arctan(\frac{1}{y})} = \frac{-1}{y^{2} + 1}$$

Integrating once more, we find $I = -\frac{\pi}{4} \neq 0$.

To show that \mathscr{H}^n_{δ} is a measure, the only issue is to prove countably subadditivity, and the proof is identical to that for Lebesgue measure. Suppose $A \subseteq \bigcup_k A_k$ and, for each k, let $\{C_{jk}\}$ be a covering of A_k . Given $\epsilon > 0$, we can choose the C_{jk} so that diam $C_{jk} \leq \delta$ and

$$\sum_{j=1}^{\infty} \omega_n \left(\frac{\operatorname{diam} C_{jk}}{2} \right)^n \leqslant \mathscr{H}^n_{\delta}(A_k) + \frac{\epsilon}{2^k}$$

Then, since $A \subseteq \cup C_{jk}$,

$$\mathscr{H}^n_{\delta}(A) \leq \sum_{k=1}^{\infty} \mathscr{H}^n_{\delta}(A_k) + \epsilon.$$

Letting $\epsilon \to 0$ gives the desired result. Next, as $\delta \to 0^+$, \mathscr{H}^n_{δ} increase. So, it follows from \mathfrak{H}^n_{δ} that \mathscr{H}^n is a measure.

So For m > n we want to show that

$$\begin{cases} \mathscr{H}^n(A) < \infty \implies \mathscr{H}^m(A) = 0, \\ \mathscr{H}^m(A) > 0 \implies \mathscr{H}^n(A) = \infty. \end{cases}$$

The critical fact, which follows easily from considering coverings of $A \subseteq \mathbb{R}^n$, is

$$\mathscr{H}^m_{\delta}(A) \leqslant \frac{\omega_m}{\omega_n} \left(\frac{\delta}{2}\right)^{m-n} \mathscr{H}^n_{\delta}(A).$$

The desired results now follow by letting $\delta \rightarrow 0$.

 $\overset{\scriptstyle{\scriptstyle{\frown}}}{\overset{\scriptstyle{\scriptstyle{\leftarrow}}}{\overset{\scriptstyle{\leftarrow}}}}$ We want to show that if $f: \mathbb{R}^p \to \mathbb{R}^q$ is Lipschitz and if $A \subseteq \mathbb{R}^p$ then

 $\mathscr{H}^n(f(A)) \leq (\operatorname{Lip} f)^n \mathscr{H}^n(A)$

If $A \subseteq \cup C_j$ then $f(A) \subseteq \cup f(C_j)$. Also diam $(f(C_j)) \leq (\text{Lip } f) \text{ diam}(C_j)$. Thus,

$$\mathscr{H}^n_{(\operatorname{Lip} f)\delta}\left((f(A)) \le \mathscr{H}^n_{\delta}(A)\right).$$

Letting $\delta \rightarrow 0$ gives the result.

